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1. Deep Space Communications
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Applications — Space Science Research

* Answer key scientific questions such as

— Are we alone in the universe?
— How did the universe start?

» Robotic missions and emerging crewed missions

— Explorations of the Moon, Solar system bodies and their moons

* e.g., LRO, STEREO, Magellan, Mars rovers, Juno, Cassini, New
Horizons, Voyager

— Astrophysics studies of exoplanets, cosmic evolution
* e.g., Kepler, TESS, SIRTF, JWST
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Missions In various corner of the universe
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NASA/JPL Missions

« 35" missions currently supported by the Deep Space Network (DSN)

« Many upcoming deep space cubesats
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Vision: JPL’s legacy by 2020

Established a continuous Explored the Jovian and Saturnian satellites in detail
presence around and on the and probed their surfaces and interiors for possible
surface of Mars pre-biotic and life-favorable environments.

B

Returned first samples
from other solar system
bodies beyond the moon.
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Ref.: Elachi, C., Space Exploration in the Next Decade: Challenges and Opportunities, Mar. 2004



Deep Space Communications Networks

» International space agencies

— NASA, ESA, JAXA, etc.
- Large aperture antennas (30-70 m) &
— Mission support
* Mostly network centric
¢ Some cross support

» Interplanetary spacecraft communications

— Telemetry, Tracking and Command
(TTC) Goldstone View

— Science (Radio Science, Radar, Very =& (
Long Baseline Interferometry) -

Madrid
View
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Large Distance, Low Power

Long distance communications
— Lunar missions (0.002 AU) to Voyager at 140 AU

640 x 372 - space.com

Received power is inversely
proportional to the square of the
distance.
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Mars Distance:
e o7 LEO: ~400 km Lunar Distance: ~225,000,000 km
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D. Abraham, Working Toward More Affordable Deep Space Cubesat Communications:
MSPA and OMSPA,
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https://www.dropbox.com/sh/fx8auva239g0wx9/AADMzWa7wgXplOKmmoFk2rgaa/D2-
Abraham?dI=0&preview=ISSC2016_WorkingTowardAffordableCommunications_ URS2
57550.pptx#



Technical Focus in Deep Space Communications

System Reference

 Low-power communications require: e f o

de
‘acuum Window

— Large antenna with maximum G/T : o
 Cryo-cooled LNA ey .‘ A E —

— Modulation & coding optimized for low SN S
power regime S e

+ Typical modulation: BPSK, QPSK N T
» Typical coding: Convolutional, Reed | Py, B

Solomon, Concatenated, Turbo,
Low-density parity check

« Special operation:
— MFSK for EDL
— Beacon for long duration flight

— Maximum possible EIRP for emergency 7
search >

Calibration Input
Coupler
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Antenna Arraying to Aid Really Low Signal

« A way to enhance antenna aperture

— Routinely used by Voyager,
Spitzer, New Horizons

« Downlink array
— 34-m/70-m arraying
— Polarization combining

« Uplink array (R/D capability) : @“;;;::ﬂ:ﬁ;‘;z:‘:;““

received by EPOXI

— Gain proportional to N2 instead [ omonna rower
of N (as with downlink)

received by EPOXI

» EPOXI transponder measures received
uplink power via the AGC, reports data
to ground station (engineering data)

» Successful phasing maximizes received
uplink power at spacecraft

+ Provides direct measurement and
verification of far-field signal power

N(\SA Jet Propulsion Laboratory Ref.: Vilnrotter, Uplink Array Concept Demonstration with the EPOXI
X California Institute of Technology Spacecraft, IEEE Aerospace, 2009



Maximizing Data Return via Adaptive Data Rate

« Adjusting data rate per available link margin during the pass

— More important at higher operating frequency
« Steeper curves

— Higher performance with continual adjustment of data rate
« Requiring more capable flight system

Magellan SSMR Margin
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High Performance Coding

« Trading complexity (with lower
processing rate) to gain better
Eb/No performance

— Within 1 dB of AWGN
channel capacity

— Convolutional, Reed
Solomon, Concatenated,
Turbo, and Low-Density
Parity Check codes
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http://deepspace.jpl.nasa.gov/dsndocs/810-005/208/208A.pdf
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2. Deep Space Tracking
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Tracking data products

« Enable mission navigation via orbit determination

* Precise measurement of Doppler and Ranging

— 50 microHz/s Doppler (7E-16 of X-band carrier freq)
— 1-m ranging (2E-13 of Pluto distance/New Horizons flyby)
— 2-way vs. 3-way measurements

« Calibration data needed to minimize systematic errors
— System ranging calibration
— Earth orientation parameters
— Media delay in Earth troposphere and ionosphere
— Time and frequency offset among sites of data collection

N(Q\SA Jet Propulsion Laboratory
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Delta-DOR Technique

« Use of Delta-DOR to complement
Doppler/Ranging

— Best for plane-of-sky position
measurement

— Delta measurement with
guasar and spacecraft
remove systematic error in

equipment and Earth media £ -
. Baseline B | -
— Require Catalog for X- and | %}
Ka- band radio sources 1=B-cos(®)/c =
— Require equipment with
= - Ref:, J. Border et al. — Radiometric Tracking
WIdEband recordlng and for Deep Space Navigation, American
stable de|ay Astronautic Society, 2008
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3. Spectrum Considerations

N(Q\SA Jet Propulsion Laboratory

J© California Institute of Technology



Spectral Migration

Performance vs. Risk

— Better performance at higher frequency (more gain, lower mass)

— Avoidance of spectral congestion
* Among missions
» Between scientific and commercial users

— Balanced by the risk and cost consideration on new technology
» Missions typically prefer proven hardware
Transition time (among NASA deep space missions)

— S-band missions (~1960, Explorer/Pioneer)
— X-band missions (~1976, Voyager)
— Ka-band missions (~2009 Kepler)
« Cassini radio science carrier only, ~1997
— Optical missions

 Demo - Galileo (1992), Messenger (2012), LADEE (Lunar 2013) ¢
ISS/OPAL (2014), ISS/LCRD & Psyche (planned, ~

— Transition takes timel!l!
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Optical Terminal/Antenna Options

Optical

Clamshell

Prime Focus Corrector
Optical Path

Secondary

S

RF Path to Pedestal Room

Optical Communications Telescope DSN RF/optical hybrid antenna concept

Ref:, T. Torrez — RF/Optical Hybrid Antenna,
https://ipnpr.jpl.nasa.gov/progress_report/42-
201/201B.pdf
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Performance Consideration

Lower frequency operation Higher frequency operation
+ Better immune to weather - More subject to weather, special
condition, more tolerant to pointing control (monopulse
pointing error rather than conscan, abberation)
- Lower G/T, heavier flight + Higher G/T, less equipment mass
equipment

Moving Frame
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Fig. 6-3. Oxygen absorption coefficient versus frequency, T= 300 K,
P=1013 mbar (1.013 = 105 Pa).

Atmospheric Absorption Antenna Gain vs. Frequency/Aperture Aberration
https://www.nasa.gov/pdf/694635main_Pres_Public_Universit consideration

Jet Propulsion Laboratory y_Navarra_Astronaut_Robotic.pdf
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4. Science
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Goldstone Solar System Radar

SROIFIBE o e
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Research focus % i B ﬂ ~§j. ﬁ . *
 Planetary radar -~ ﬁ e ae

- Asteroid detection 22208 m.\.\,\
High power transmitter 500 kW, ‘ BB

X-band

Co-observing with Aerocibo

Observatory
— Aerocibo: 305-m, S-band,
30% sky view, 20x sensitivity
— GSSR: 70-m, S/X-band,
80% sky view, higher
resolution

Ref. http://www.spaceref.com/news/viewpr.htm|?pid=32483

2012-DA14

http://www.space.com/19804-asteroid-flyby-nasa-radar-2012-dal4.html
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Radio Science

» Affected phase and amplitude of
spacecraft signal under
Influence of planets and their
satellites, along with their
atmosphere , enable the study
of these planetary bodies

\." RADIO SIGNAL (5, X-, AND Ka-BANDS)

iy ————* | PROCESSING AND ANALYSIS

— Signal attenuation during
occultation yield information Ref
. ; . http://saturn.jpl.nasa.gov/spacecraft/cassiniorbit
on object’s density

erinstruments/instrumentscassinirss/

N()Q\QA Jet Propulsion Laboratory
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Very Long Baseline Interferometry

PMX PMY UT1

» Study Earth deformation and S E
rotational change through ol :
Time/Earth Motion Precision ' )
Observation (TEMPO) . N(y) e
— Location of spin axis w.r.t. O g o o
celestial frame (precession- Et?;:/lwww.cbk.waw.pI/~kosek/EOPPW2009/contri
nutation motion), terrestrial butions/session1/sessionL.3ftue4_Gross pdf

frame (polar motion), angle
that Earth rotates about spin

axis (spin)
« Characterize signal fluctuation
of cataloged quasars

Declination (deg)

Right Ascension (hours)

Jet Propulsion Laboratory
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Performance Considerations

« High frequency/phase stability
— Co-observing phase calibration required
« High recording bandwidth
— The signal is in the noise!
* Low latency
— Data transfer over WAN is a challenge
* High power transmitter
— Reliability considerations
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5. Operations
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Operational Efficiency

« Cost saving emphasis!!!
* Increase tracking time via multiple spacecraft per antenna
— Required co-location, e.g., Mars or lunar orbiters

* Operated with multiple-link per operator and follow-the-Sun
operations

— Automation of equipment setup and execution of pre-defined
events during track

— Promote more standard procedures and preplanned input,
less real-time changes

« Use of CCSDS standard service/data interface

— Increase cross support with other space agencies (e.g.,
ESA) while reduce engineering effort

N(Q\SA Jet Propulsion Laboratory
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Follow the Sun Operations

F\ Jet Propulsion Laborator y | California Institute of f Technol logy

" DEEP SPACE NETWORK NOW ElEa ©

* Moving from each site

- &
controlling its antenna @ ‘%3 ?{
24-hrs/day to just day - T VOYAGER 1
time (~8-9 hrs/day) ) 2061 bion | [ 0T

— But during uptime, = GoLosToNe 3 1zy£ e
the controllers - N
controlling the entire a5 « 102 1)

DSN network.

%7 CANBERRA g
43 34
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Multiple Spacecraft per Antenna Operations

Simultaneous
downlink from
4 spacecraft

4-Spacecraft
Serial Uplink
Swapping

l'J
Quarter
of Pass

B
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. o8 / Last
/ /.."// Quarter
¥ of Pass
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D. Abraham, Working Toward More Affordable Deep Space Cubesat Communications:

MSPA and OMSPA,

https://www.dropbox.com/sh/fx8auva239g0wx9/AADMzWa7wgXplOKmmoFk2rgaa/D2-
Abraham?dl=0&preview=1SSC2016_WorkingTowardAffordableCommunications_ URS2

57550.pptx#




Opportunistic Multiple Spacecraft per
Antenna Operations

Cubesats Host

/ -
opportunistically / w Ap—cr
transmit “open- p
loop” whilein

“host’s” ground ¢
antennabeam. / .*

Approach #1:

Cubesats
MOCretrieves Cubesat Mission

/
/ L .
) "* . relevantportion  goerations Center
) * of recording, (MOC)
demodulatesiit,

and decodes it.

Serveraccessible

via secure
internet site

Self-Service Approach #2: Via the same
secure intemetsite, cubesat MOC
inputs relevant portion of recording &
signal characteristics. DSN software
then demodulates & decodesin
accordance with inputs and delivers
resulting transfer frames.

D. Abraham, Working Toward More Affordable Deep Space Cubesat Communications:

MSPA and OMSPA,

https://www.dropbox.com/sh/fx8auva239g0wx9/AADMzWa7wgXplOKmmoFk2rgaa/D2-
Jet Propulsion Laboratory  Abraham?di=0&preview=1SSC2016_WorkingTowardAffordableCommunications_URS2

NASA California Institute of Technology 57550.pptx#



Space Link Extension Concept

« Enable one mission user to interface with the ground station in
a standard way
— Cross support service from one space agency to another

Domain

of

Space Link
Extension

Control Center

Return Link Data
Processing Facility

B acility

M. Kearny & E. Barkley, CCSDS SLE and CSS Space Link Extension Cross Support

Jet Propulsion Laboratory Services

N
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Summary

 Deep space communication challenge due to weak signal

— Maximize signal reception via different technique of
modulation & coding, arraying

« Deep space navigation require highly accurate radiometric
measurements

— Need for other technigue (e.g., DOR) & calibration
« Deep space science

— Amplitude & phase stability are key to science observations
e Spectrum

— Migration to higher frequencies for better performance
« Deep space operation challenge on operational efficiency

— Via use of multi-link per operator, follow-the-sun operations,

multiple spacecraft per aperture, standard interfaces
N(Q\SA Jet Propulsion Laboratory

). California Institute of Technology



